

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

SCHOOL OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF BIOLOGY, CHEMISTRY AND PHYSICS

QUALIFICATION: BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 6
COURSE CODE: EAM601S	COURSE NAME: ELECTRICITY AND MAGNETISM
SESSION: JULY 2023	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SECOND OPPORTUNITY / SUPPLEMENTARY EXAMINATION PAPER	
EXAMINER (S)	PROF MUNAWAR KARIM
MODERATOR:	DR VAINO INDONGO

INSTRUCTIONS

- 1. Write all your answers in the answer booklet provided.
- 2. Read the whole question before answering.
- 3. Begin each question on a new page.

PERMISSIBLE MATERIALS

Scientific Calculator

THIS PAPER CONSISTS OF 4 PAGES INCLUDING THIS FRONT PAGE.

Electricity and Magnetism Final Examination June 2023

Supplemental examination

1) In the diagram below there is a collection of charges. + means +q and – means -q. What is the flux through the surface of the sphere? Recall flux $\Phi_E = \oint \vec{E} \cdot \overrightarrow{da}$. (20 points)

- 2) Given a uniformly charged cylinder of radius R, length l and charge Q: (10 points)
 - a) Calculate the *E*-field inside the cylinder (3 points)
 - b) Calculate the *E*-field outside the cylinder (3 points)
 - c) Draw a graph of the E-field both inside and outside the cylinder (2 points)
 - d) Identify points where the field is maximum and minimum. There is more than one point where the field is minimum.
 (2 points)
- 3) Electric potential and electric field are related by E=-dV/dr. The field is strongest where the potential changes most rapidly. In the diagram below the metal object is charged to a potential V. Identify the point (10 points)

3-2 OBJECT

- a) Where the field is maximum. (4 points)
- b) Where the field is minimum. (4 points)
- c) Where the field has an intermediate value. (2 points0
- 3) You are required to measure an unknown current *I*. (20 points)
 - a) Set up a force balance with two anti-parallel currents each carrying a current I and of length l. A mass m is placed on the top current carrying conductor so that its weight balances the repulsive force between the currents. (10 points)
 - b) Draw a free-body diagram depicting equilibrium between the weight of the mass and the force between the two currents. Using Newton's Second law write a vector equation depicting equilibrium. At equilibrium the center-to-center distance is $r=5mm. \tag{5 points}$
 - c) From the force calculate the unknown current I in terms of l,m and g. Let $l=0.1m,m=1.63\times 10^{-3}~kg$, $\mu_0=4\pi\times 10^{-7}H/m$, $g=9.80~m/s^2$. Use $F=(\mu_0/4\pi)I^2l^2/(r)^2$. (5 points)

(3)

- 4) Two charges $q_1=2nC$ and $q_2=+0.25nC$ are located on the x-axis separated by 0.3m. A third charge $q_3=-0.5nC$ is also placed on the x-axis. (20 points)
 - a) Set up the equation for the forces acting on q_3 due to q_1 and q_2 . (10 points)
 - b) Find the locations (two solutions) on the x-axis where the force on $q_3=0$. (10 points)
- 5) A hollow cylindrical conductor of inner radius $r_1 = 0.03m$ and outer radius $r_2 = 0.05m$ carries a current I = 10A along its axis. (20 points)
 - a) Using Ampere's law calculate the B-field in the hollow part of the conductor. (5 points)
 - b) The B-field outside the conductor. Show the direction of the B-field. (5 points)
 - c) The B-field in the solid part of the conductor. Use $\mu_0=4\pi\times 10^{-7}H/m$. (10 points)

